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FAST AND ACCURATE SIMULATION OF QUANTUM
COMPUTING BY MULTI-PRECISION MPS: RECENT

DEVELOPMENT

AKIRA SAITOH∗

Quantum Information Science Theory Group, National Institute of Informatics, 2-1-2
Hitotsubashi, Chiyoda, Tokyo 101-8430, Japan

The time-dependent matrix-product-state (TDMPS) simulation method has
been known as one of fast simulation methods to study time-evolving quantum

systems. Here, I report recent development of my open-source C++ library
named ZKCM QC designed for TDMPS simulations of quantum circuits with
arbitrary floating-point precision. Simulation performance is reported for well-
known quantum algorithms. In addition, it is numerically shown that a trust-

worthy simulation should be performed in multiprecision and should not involve
truncations of nonzero Schmidt coefficients.

Keywords: Time-dependent matrix product states; Quantum computing

1. Introduction

Classical quantum-circuit simulators1–9 are practical tools to study quan-
tum computing10 for the time being as it is quite far beneath the stage
of production. In this regard, the time-dependent matrix-product-state
(TDMPS) method is a useful simulation method, which was introduced
by Vidal in 2003,3 for a fast simulation of quantum computing when it
does not involve a large amount of entanglement. It simulates a quantum
circuit within the cost of O(qgm3

max,max) where qg is the number of single-
qubit and two-qubit operations in the circuit; mmax,max := maxs,tm(s, t)
with m(s, t) the Schmidt rank for the splitting between the sites s and s+1
at time t. Thus, a polynomial time simulation is possible if the Schmidt
rank grows only polynomially in the input size.

The TDMPS method has been, however, used mainly for evaluating the
time dependence of physical properties of condensed matters11,12 rather
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than simulating quantum algorithms in the physics community as far as
the author knows. There have been a few works on TDMPS simulations of
quantum algorithms: Kawaguchi et al.13 simulated the Grover search for a
simple oracle and showed that the simulation cost was polynomial in the
number of qubits. This was because of the simple oracle structure. Later
I simulated a variant of the Brüschweiler search and showed that all the
solutions could be found within polynomial time when the oracle struc-
ture was simple enough.5 Recently, Chamon and Mucciolo14 theoretically
showed that an integer computation based on TDMPS could solve a search
problem within a subexponential time (i.e. O(2nc

) time with c < 1, which
is smaller than the query complexity of the Grover search) as long as the or-
acle circuit can be decomposed to less than O(n2) two-qubit gates. Besides,
Bañuls et al.15 used a TDMPS simulation of an adiabatic time evolution
for solving an exact-cover SAT problem.16 They reported that they could
simulate a time evolution of a 100-qubit system with the threshold 14 for
the Schmidt rank.

Thus, there have been several evidences for the usefulness of TDMPS
for fast simulation of quantum algorithms although there have not been
many authors working in this direction. It is easily expected that more re-
searchers will have an interest if there are user-friendly free softwares for this
purpose. One choice is the well-known ALPS package,17 which is a general-
purpose simulation library for condensed matter physics. It has a routine for
TDMPS but it can only be used for simulating an adiabatic time evolution
under given initial and final Hamiltonians. The other choice is my C++
library ZKCM QC,18 which is an extension library of the ZKCM library9

developed with an emphasis of an easy-to-use syntax for multiprecision
matrix computation. It uses GMP19 and MPFR20 as back-end libraries for
multiprecision floating-point computation so that the outputs of ZKCM QC
are accurate for more than several tens of qubits for which double-precision
computation causes significant rounding errors during simulation.

In this report, we firstly revisit the basics of the TDMPS method in
Sec. 2. The demand of multiprecision computation is briefly described in
Sec. 3. Actual simulation performance of the ZKCM QC library is reported
in Sec. 4 in which the standard quantum algorithms, namely, the Deutsch-
Jozsa algorithm,21 the Grover search,22 and the Shor’s algorithm23 are
simulated. Simulation results of an in-place addition is also explained sepa-
rately since this is one of the important components for economical imple-
mentation of the Shor’s algorithm. Concluding remarks are given in Sec. 5.
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2. Basics of the TDMPS method

Here, we begin with a convention of notations. The computational basis is
represented as {|0〉, |1〉}n for n-qubit quantum states with |0〉 =

(
1 0

)T

and |1〉 =
(
0 1

)T
. An n-qubit quantum state is represented as |Ψ〉 =∑1···1

i0···in−1=0···0 ci0···in−1 |i0 · · · in−1〉 with complex amplitudes ci0···in−1 . We
employ the Vidal’s MPS form3,5 for our TDMPS simulations:

|Ψ〉 =
∑1···1

i0···in−1=0···0

[∑m0−1
v0=0

∑m1−1
v1=0 · · ·

∑mn−2−1
vn−2=0 Q0(i0, v0)V0(v0)

×Q1(i1, v0, v1) · · ·Qs(is, vs−1, vs)Vs(vs)Qs+1(is+1, vs, vs+1) · · ·

· · ·Vn−2(vn−2)Qn−1(in−1, vn−2)
]
|i0 · · · in−1〉,

(1)

where we use tensors {Qs}n−1
s=0 with parameters is, vs−1, vs (v−1 and vn−1

are excluded) and {Vs}n−2
s=0 with parameter vs. In addition, tensor Vs(vs)

stores the Schmidt coefficients for the splitting between the sth site and the
(s + 1)th site; ms is a suitable number of Schmidt coefficients which does
not exceed a threshold mtrunc of one’s choice.

For example, |0 · · · 0〉 is represented in this form by setting all ms to 1,
and setting all Qs(0, 0, 0) and Vs(0) to 1, and Qs(1, 0, 0) to 0.

Under the MPS representation, a unitary time evolution can be com-
puted by taking the corresponding space only into account, i.e., we have
only to handle the tensors for the space of our concern. For exam-
ple, consider a unitary operation U =

∑1
k,k′=0 Ukk′ |k〉〈k′| acting on the

qubit s. Then the resultant state is computed by updating Qs in the
following way. Qs(is, vs−1, vs)

U7→ Q̃s(is, vs−1, vs) with Q̃s(is, vs−1, vs) =
〈is|

∑
k,k′ Uk,k′Qs(k′, vs−1, vs)|k〉.

Time evolution under a two-qubit unitary operation acting on qubits s
and s+ 1, U =

∑
ksks+1,k′

sk′
s+1

U(ksks+1)(k′
sk′

s+1)|ks〉|ks+1〉〈k′s|〈k′s+1|, can
also be computed in a similar manner with a little complicated process.
This process updates the tensors Qs, Vs, and Qs+1. Let us firstly write the
state in the following way.

|Ψ〉 =
∑ms−1

vs−1=0

∑1
is=0

∑1
is+1=0

∑ms+1
vs+1=0

[
Vs−1(vs−1)|vs−1〉

⊗W (is, is+1, vs−1, vs+1)|is〉|is+1〉 ⊗ Vs+1(vs+1)|vs+1〉
]

with |vs−1〉 the left Schmidt vectors for the splitting between sites s−1 and
s, W (is, is+1, vs−1, vs+1) =

∑
vs
Qs(is, vs−1, vs)Vs(vs)Qs+1(is+1, vs, vs+1),

and |vs+1〉 the right Schmidt vectors for the splitting between sites s + 1
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and s + 2. The unitary transformation is applied to the tensor W in the
following way. W (is, is+1, vs−1, vs+1)

U7→ W̃ (is, is+1, vs−1, vs+1) with

W̃ (is, is+1, vs−1, vs+1) =

〈is|〈is+1|
∑

ksks+1,k′
sk′

s+1

U(ksks+1)(k′
sk′

s+1)W (k′s, k′s+1, vs−1, vs+1)|ks〉|ks+1〉.

Now the resultant state is written as

|Ψ̃〉 =
∑

a

∑
b

Rab|a〉|b〉

with labels a = (vs−1is) and b = (is+1vs+1), and matrix R whose (a, b) ele-
ment is Rab = Vs−1(vs−1)W̃ (is, is+1, vs−1, vs+1)Vs+1(vs+1). Then, we per-
form a singular value decomposition (SVD) of R. This results in R = ADB†

where A is a 2ms−1 × 2ms−1 unitary matrix, D is a 2ms−1 × 2ms+1

matrix with only diagonal elements in the upper-left side, and B is a
2ms+1 × 2ms+1 unitary matrix. This SVD is performed in the way that
the singular values are found in the descending order in D. Suppose
there are q nonvanishing singular values. This SVD can also be written
as Rab =

∑q−1
d=0AadDdd(Bbd)∗. We choose at most mtrunc elements among

Ddd’s (from larger to smaller) and store them into the tensor Ṽs(vs). Hence,
m̃s = min(q,mtrunc) elements are stored. Then, we have

|Ψ̃〉 =
fms−1∑
vs=0

Ṽs(vs)|l(vs)〉|r(vs)〉,

where |l(vs)〉 =
∑

aAavs
|a〉 and |r(vs)〉 =

∑
b(Bbvs

)∗|b〉. Note that
|l(vs)〉 and |r(vs)〉 are represented in the basis |vs−1〉|is〉 and the
basis |is+1〉|vs+1〉, respectively. By writing the basis labels explicitly,
we have |l(vs)〉 = Vs−1(vs−1)Q̃s(is, vs−1, vs)|vs−1〉|is〉 and |r(vs)〉 =
Q̃s+1(is+1, vs, vs+1)Vs+1(vs+1)|is+1〉|vs+1〉. In this way, the tensors Qs, Vs,
and Qs+1 are updated to Q̃s, Ṽs, and Q̃s+1.

It is well-known that single-qubit and two-qubit operations are sufficient
for performing universal quantum computation. The ZKCM QC library,
however, uses three-qubit operations as basic operations in order to avoid
an overhead in a circuit construction. Simulation of a three-qubit quantum
gate acting on consecutive qubits requires an update of tensors Qs, Vs,
Qs+1, Vs+1, and Qs+2. This is a more complicated process than the above-
described one. For the details, see the appendix of Ref. 9.

It is also possible to simulate a single-qubit projective measurement.
Consider a projection operation P acting on the sth qubit. First we up-
date the tensor
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Qs to Q̃s with Q̃s(is, vs−1, vs) = 〈is|
∑

i′s
Qs(i′s, vs−1, vs)P |i′s〉/

√
µ with

µ = ‖
∑

is,vs−1,vs
Qs(is, vs−1, vs)P |is〉‖2. Then, we need to update the ten-

sors corresponding to the other qubits as long as they are correlated with
the sth qubit. This can be done by sequentially using the same process as
applying I⊗I to the consecutive qubits, moving the cursor from s to 0 and
also from s to n− 1. We need not to update the tensors beyond the place
where the Schmidt rank is one.

2.1. Operator-space TDMPS

Although I do not use the operator-space TDMPS for simulations pre-
sented in this contribution, it is beneficial to mention about it as it is quite
straight-forward to migrate from the standard TDMPS. Here, we follow
the formulation by Zwolak.24 It is used for simulating time evolution of a
density operator under trace-preserving completely-positive (TPCP) maps.

The few things we should pay attention to are the computational basis
and the definition of the inner product. As for the basis for a qubit, we
need to employ an operator basis, typically {|0), |1), |2), |3)} where |0) =
I, |1) = X, |2) = Y , and |3) = Z are standard Pauli matrices [here,
Z = diag(1,−1)]. As for the inner product, its definition should be given
as (A|B) = Tr(A†B)/d for operators A and B acting on a d-dimensional
Hilbert space. Then the operator MPS representation of an n-qubit density
matrix is

|ρ) =
∑3···3

i0···in−1=0···0

[∑m0−1
v0=0

∑m1−1
v1=0 · · ·

∑mn−2−1
vn−2=0 Q0(i0, v0)V0(v0)

×Q1(i1, v0, v1) · · ·Qs(is, vs−1, vs)Vs(vs)Qs+1(is+1, vs, vs+1) · · ·

· · ·Vn−2(vn−2)Qn−1(in−1, vn−2)
]
|i0 · · · in−1).

(2)

This is quite similar to the MPS of a pure state we have seen in Eq. (1). For
a simple example, (I/2)⊗n is represented by an operator MPS with tensor
data Q0(0, 0) = 1/2, Qs(0, 0, 0) = 1/2 (s = 1, . . . , n− 2), Qn−1(0, 0) = 1/2,
and Vs(0) = 1 (s = 0, . . . , n− 2).

Time evolution of |ρ) caused by a TPCP map Λ can be simulated in
the same manner as we simulate a unitary time evolution in the standard
TDMPS method. Here, Λ must be represented as a square matrix with the
|k)(k′| notation, i.e., Λ =

∑
kk′ Λkk′ |k)(k′|. For example, time evolution

caused by a TPCP map Λ acting on the sth qubit is simulated by updating
Qs(is, vs−1, vs) to Q̃s(is, vs−1, vs) = (is|

∑3,3
k=0,k′=0 Λk,k′Qs(k′, vs−1, vs)|k).

Time evolution caused by a two-qubit TPCP map can also be simulated in
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the same manner as we have already seen for the two-qubit unitary gate
simulation in the standard TDMPS method.

It should be useful to mention that a unitary operation U acting on a
d-dimensional Hilbert space can be easily translated into a map U acting on
a d2-dimensional operator Hilbert space. Let us denote the operator basis
operators as |k) ≡ |σk) with σk the kth basis operator. Then, the (i, j) ele-
ment of the matrix representation of U is Uij = (i|U|j) = Tr(σiUσjU

†)/d.

3. Necessity of multiprecision computation

Multiprecision computation has been utilized in computational physics to
avoid the accumulation of rounding errors in sensitive simulations of dy-
namics,25 but has not been widely used in the community. For the TDMPS
simulation of quantum circuits, I demonstrated that multiprecision compu-
tation is requisite in order for avoiding a significant error in the simulation
results.18

The particular findings in Ref. 18 were as follows. In both cases, a trun-
cation of nonzero Schmidt coefficients was not employed.
(i) A TDMPS simulation of a five-qubit circuit for a three-qubit Grover
search was performed. In the Grover routine RG, the oracle part was
set to Uo = 1 − 2|101〉〈101|. Thus, RG was set to (1 − 2|s〉〈s|)Uo with
|s〉 = (1/

√
8)

∑111
x0x1x2=000 |x0x1x2〉. The exact probability of finding the

solution after twenty Grover iterations, p20 = |〈101|R20
G |s〉|2, was calcu-

lated exactly by a symbolic computation. The error in the probability p̃20

computed by the simulation was evaluated as the quantity E = |p̃20 − p20|.
This numerical error E was plotted against the floating point precision em-
ployed for the simulation. It was found that E was larger than 0.035 and
did not change largely until the precision was enhanced beyond the dou-
ble precision. It suddenly dropped around the 55-bits precision and almost
vanished for more than 70-bits precision.
(ii) An n qubit circuit performing
(QFT−1)(QFT)(CNOT0,n−1)H0|00 · · · 0n−1〉 was considered, where QFT is
a quantum Fourier transform, CNOT0,n−1 is a controlled NOT gate acting
on the 0th and (n− 1)th qubits, and H0 is the Hadamard transform acting
on the 0th qubit. Since (QFT−1)(QFT) is just an identity map, the resul-
tant state should be (|000n−1〉+ |101n−1〉)/

√
2⊗|01 · · · 0n−2〉. In a TDMPS

simulation, however, there is a numerical error to some extent in the com-
puted resultant state. The error was quantified by E = |〈00|ρ̃′|11〉 − 1/2|
with ρ̃′ the computed reduced density matrix of the 0th and the (n− 1)th
qubits of the resultant state. For n = 8, 14, and 20, E was plotted against
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the floating point precision. It was found that, for all of these values of n,
a sudden drop of E was observed.
These simulation results suggest that there are cases where a numerical er-
ror is significant until we go beyond a certain threshold for the floating point
precision. It is thus recommended to see the behavior of computational re-
sults as functions of the floating point precision in TDMPS simulations of
quantum circuits.

4. Performance

As mentioned, my simulation library ZKCM QC uses multiprecision
floating-point operations provided by GMP19 and MPFR20 for basic op-
erations. Thus the basic operations are inevitably slow in comparison to
fixed-precision floating-point operations. The way to improve the perfor-
mance by the author’s effort is therefore limited to choosing algorithms for
matrix manipulations carefully and making technical elaborations. Here, I
report the recent progress in this regard. Firstly, an effort of speeding-up the
routine for Hermitian-matrix diagonalization will be reported in subsection
4.1. Then, the simulation performance of my library will be reported for
typical quantum algorithms in the remaining subsections. More specifically,
results for the Deutsch-Jozsa algorithm, the Grover search, an in-place ad-
dition, and the Shor’s prime factorization are explained in subsections 4.2,
4.3, 4.4, and 4.5, respectively.

4.1. Recent speedup in Hermitian-matrix diagonalization

Speed of Hermitian matrix diagonalization is a large factor of the actual
speed of the TDMPS simulation using ZKCM QC since it uses the routine
of Hermitian-matrix diagonalization for the singular value decomposition.
As of version 0.3.6 of ZKCM, the speed has been improved significantly and
now that it is faster than that of the famous PARI library.26 Our routine
uses the standard Householder-QR method for Hermitian matrices27 and
is named “diag H”.

It should be noted that conventional multiprecision routines for diag-
onalization have not been useful for our purpose. The rountine “eigen”
of PARI does not work for degenerate subspaces (see the PARI/GP bug
report logs - #1349, August 2012). Thus it cannot be used in TDMPS
simulations of quantum circuits, since most of the subspaces we handle are
degenerate (this situation is quite common whenever we have Hadamard
gates and CNOT gates). PARI also has another routine “jacobi” but this
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works for real symmetric matrices only. Thus a workaround is needed to
use it for our purpose. [For an Hermitian matrix A, the workaround is to

use a symmetric matrix
(

Re(A) −Im(A)
Im(A) Re(A)

)
(see Ch. 11.5 of Ref. 28).] In

addition, it uses the Jacobi’s method so that it is slower than the House-
holder’s method. Furthermore, we need to double the precision of an input
matrix when “jacobi” is used together with this workaround, in order to
support specified precision as far as I tested. Another routine is found in
the multiprecision LAPACK.29 Nevertheless, this library cannot be used
for the back-end of TDMPS because it has a serious bug in the matrix
diagonalization (see a bug report on 26 July 2012 in the Mplapack-devel
mailing list). It fails for computing eigenvalues for some matrices with rela-
tively large corner elements and some vanishing center elements (typically
a density matrix of an entangled state); this bug has been unfixed yet.

Here I compare the routine “diag H” of ZKCM versions 0.3.6 and 0.3.2
with the routines “eigen” and “jacobi” of PARI version 2.5.3. For this
comparison, I test the average time consumption to find all the eigenvectors
of a random N × N Hermitian matrix with a unit Frobenius norm for
precision prec [bits].

First I set N to 100 and tried several values of precision (Table 1). The
time consumptions of the routines were on the same order of magnitude
for the tested precision between 256 and 1280 [bits]. “diag H” of ZKCM
version 0.3.6 was the fastest among the compared routines. Second, I fixed
the precision to 768 [bits] and tried several values of N . As shown in Table
2, for the tested values between 25 and 125, the time consumptions were
again on the same order of magnitude, and “diag H” of ZKCM version 0.3.6
was the fastest for N ≥ 75.

4.2. Simulation of the Deutsch-Jozsa algorithm

Here we will see a TDMPS simulation of the Deutsch-Jozsa algorithm.21 In
a brief explanation, the problem instance is a function f : {0, 1}l → {0, 1}
that is either balanced or constant. [Note: f is balanced if #{x|f(x) =
0} = #{x|f(x) = 1} where x ∈ {00 · · · 0l−1, . . . , 10 · · · 1l−1}; f is constant
if f(x) is same for all x.] The question is to decide whether f is balanced
or constant. This takes 1 + 2l−1 queries for the worst case in classical com-
putation. In contrast, it takes only a single query in quantum computation
using the Deutsch-Jozsa algorithm. A sketch of the algorithm is as follows.
(i) We apply H⊗lVfH

⊗l to the l-qubit state |00 · · · 0l−1〉, where Vf is an
operation mapping each |x〉 to (−1)f(x)|x〉.
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Table 1. Comparison of the average real time consumption for the program
routines to find all the eigenvectors of a normalized random 100×100 Hermi-

tian matrix. The average was taken over ten different matrices. The standard
deviation is shown in parentheses in small fonts. “prec” stands for the preci-
sion. [Precision was doubled for“jacobi” (see the text)]. The programs were
run as a single thread on a machine with an Intel Core i5 M460 2.53GHz

CPU, 4GB memory, and the Fedora 15 64-bit OS. Note: For precision 256
[bits], function “eigen” of PARI stopped with an error and output no result.

prec ZKCM 0.3.6,

diag H [sec]

ZKCM 0.3.2,

diag H [sec]

PARI, eigen

[sec]

PARI, jacobi

[sec]

256 73.0 (0.525) 175 (0.105) N/A (N/A) 103 (0.324)

512 109 (0.624) 259 (0.160) 171 (1.27) 265 (0.974)

768 171 (0.259) 413 (0.378) 237 (1.24) 477 (2.10)

1024 276 (1.68) 632 (0.358) 378 (1.58) 726 (2.24)

1280 394 (2.18) 903 (0.315) 503 (1.21) 1020 (5.47)

Table 2. Comparison of the average real time consumption for the program rou-
tines to find all the eigenvectors of a normalized random N ×N Hermitian matrix
under the fixed precision 768 [bits] [precision was doubled for“jacobi” (see the
text)]. The average was taken over ten different matrices. The standard deviation

is shown in parentheses in small fonts. The programs were run as a single thread
on a machine with an Intel Core i5 M460 2.53GHz CPU, 4GB memory, and the
Fedora 15 64-bit OS.

N ZKCM 0.3.6,
diag H [sec]

ZKCM 0.3.2,
diag H [sec]

PARI, eigen

[sec]
PARI, jacobi

[sec]

25 1.66 (0.0142) 3.41 (0.0152) 0.941 (0.00406) 5.99 (0.0699)

50 15.3 (0.0530) 34.5 (0.0624) 14.5 (0.0248) 50.9 (0.364)

75 61.2 (0.170) 146 (0.238) 74.3 (0.636) 182 (0.977)

100 171 (0.259) 413 (0.378) 237 (1.24) 477 (2.10)

125 386 (0.909) 961 (1.10) 596 (1.72) 1070 (7.40)

(ii) We measure the l qubits in the computational basis. The probability of
finding the qubits in 0’s simultaneously in this measurement vanishes when
f is balanced; in contrast, it is exactly unity when f is constant.
More details of the algorithm are found in, e.g., Sec. 3.1.2 of Ref. 10.

Here, let us consider a particular function f(y0 · · ·yNg−1) =⊕Ng−1
i=0 g(yi) with g(x0x1x2x3) = (x0 ∧ x1) ∨ (x1 ∧ x2) ∨ (x2 ∧ x3) where

yi ∈ {0, 1}4 and xj ∈ {0, 1}; Ng is a positive integer (symbol
⊕

stands for
the exclusive OR operation). In figure 1, the quantum circuit of the algo-
rithm for this function is depicted. This function is a balanced function for
any Ng ≥ 1. By the structure of the circuit, each of the Ng measurements
should results in Prob(0000) = 0 if there is no numerical error during sim-
ulation. This fact is easily proved: Assume that we have different values of
Prob(0000) for two different bundles of qubits in the output. This contra-
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0

0
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0

0

(b)

Fig. 1. (a) Quantum circuit of the Deutsch-Jozsa algorithm for the specified function
(see the text). (b) Internal structure of gate g.

dicts to the fact that the bundles are equivalent to each other by the circuit
structure. Thus the assumption is denied.

In my previous contribution,9 I employed Ng = 7 (namely, 65 qubits
in total) and showed that truncation of even a single nonzero Schmidt
coefficient caused a significant error in the computed value of Prob(0000).
This was because none of nonzero Schmidt coefficients was negligible.

Now I show in this report how the simulation running time andmmax,max

grows as the number n of qubits grows. As shown in Fig. 2, time consump-
tion seems to be on the order of n3 although further investigation is re-
quired. This is probably because the value of mmax,max became invariant
for n larger than a certain value as shown in the figure. This phenomenon
appeared probably because the quantum circuit was highly structured.

4.3. Simulation of the Grover search

In this subsection, the simulation performance of the ZKCM QC library is
evaluated for an example of the Grover’s quantum search.22 It was shown
by Kawaguchi et al.13 that the Grover search can be simulated efficiently
with TDMPS if a simple oracle circuit is chosen (see also my TDMPS sim-
ulation of a bulk-ensemble database search5). Here we consider the Grover
search to solve a 3SAT16 instance. 3SAT is a problem to decide if there is an
assignment to the variables x0, · · · , xv−1 such that a given conjunctive nor-
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Fig. 2. Plots of running time and mmax,max as functions of the number of qubits,
n = 9Ng + 2. The line of cn3 with c = 5.58 × 10−4 is also shown (using the left vertical
axis). Non-averaged raw data were used for the data points. The program was run as a

single thread on a machine with four Intel Xeon E7-8837 2.67GHz CPUs, 315GB memory,
and the RedHat Enterprise Linux 6 64-bit OS.

mal form (CNF) φ(x0, · · · , xv−1) = C0 ∧ · · · ∧Cc−1 becomes true (namely,
1), where Cj is a clause (lα ∨ lβ ∨ lγ) with some three literals. Here, a lit-
eral lτ is a variable xτ or its logical negation ¬xτ . A CNF is given without
ambiguity, i.e., it is written in terms of x0, · · · , xv−1 and logical operations.

Unlike the true Grover search for a quantum computer, a TDMPS sim-
ulation of the Grover search has only to handle a single query when an
instance of a decision problem is given. This is because a slight change oc-
curs in the polarization of the oracle qubit after a single query if and only
if the given instance has a truth assignment among the 2n possible assign-
ments. Figure 3 describes the construction of an oracle quantum circuit for
a 3SAT instance.

Consider the following instance: φ(x0, · · · , x6) = (¬x2 ∨x4 ∨x6)∧ (x0 ∨
x1∨¬x3)∧(¬x1∨x2∨¬x5)∧(x0∨x1∨x4)∧(¬x0∨¬x4∨x6)∧(x2∨x3∨¬x6)∧
(¬x2∨¬x5∨¬x6)∧(x1∨¬x2∨¬x3)∧(x1∨¬x3∨x5)∧(x1∨x4∨¬x6), which is
satisfiable. For this instance, a TDMPS simulation of a single query of the
Grover search was performed. The program was run as a single thread on
the machine with four Intel Xeon E7-8837 2.67GHz CPUs, 315GB memory,
and the RedHat Enterprise Linux 6 64-bit OS. It took 132 minutes to
perform this simulation when the floating-point precision was 412 [bits].
This is extremely expensive since any classical random seek may solve it
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Controlled by the false assignment for each clause

Fig. 3. Quantum oracle circuit for a 3SAT instance with v variables and c clauses.
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Fig. 4. Distribution of nonzero Schmidt coefficients at the point the Schmidt rank
reached 40.

within one millisecond. A possible reason of time consumption is a rather
large maximum Schmidt rank. It was 40 and none of the nonzero Schmidt
coefficients was negligible (Fig. 4).

4.4. Simulation of a QFT-based in-place addition

The in-place arithmetic circuits30 using quantum Fourier transform (QFT)
are quite often used for economical construction of quantum circuits as
they do not require ancillary qubits. It is theoretically easily shown that a
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TDMPS simulation of a QFT-based addition circuit is fast in the sense that
the Schmidt rank during QFT does not exceed the degree of superposition
of the input state represented in the computational basis. Here, some theo-
retical explanation is given and a TDMPS simulation of a quantum circuit
involving a simple QFT-based adder is performed.

As is well-known in this community, QFT is defined by

QFT : |a〉 7→ 1√
2n

2n−1∑
l=0

ei2πla/2n

|l〉

for an n-bit unsigned integer a = an−1an−2 · · · a0. The resultant state is
known to be separable:

1√
2n

2n−1∑
l=0

ei2πla/2n

|l〉 = |φ0(a)〉|φ1(a)〉 · · · |φn−1(a)〉

with

|φk(a)〉 = (|0〉 + ei2π(0.akak−1···a0)|1〉)/
√

2,

where (0.akak−1 · · · a0) = ak/2 + ak−1/22 + · · · + a0/2k+1.
A quantum circuit implementing QFT usually changes the state of the

kth qubit step by step in the following way.30 Here, Rk = diag(1, ei2π/2k

).

|ak〉
H−→ (|0〉 + ei2π(0.ak)|1〉)/

√
2

R2 conditioned on ak−1−−−−−−−−−−−−−→ (|0〉 + ei2π(0.akak−1)|1〉)/
√

2

−→ · · · Rk+1 conditioned on a0−−−−−−−−−−−−−→ (|0〉 + ei2π(0.akak−1···a0)|1〉)/
√

2.

(3)

Thus, the initial state |ak〉 of each qubit evolves to |φk(a)〉 without introduc-
ing entanglement with other qubits. When a superposition |ψin〉 =

∑
a ca|a〉

of computational basis states |a〉 is input to QFT, each qubit of each |a〉
evolves in the above manner. Therefore, the Schmidt rank for any splitting
between two consecutive qubits does not exceed the degree of superposition
of the input state, namely, the number of nonzero ca’s, throughout the QFT
process.

The circuit structure of QFT employed in the ZKCM QC library is
the one introduced by Fowler et al.31 for the linear nearest neighbor (LNN)
architecture as illustrated in Fig. 5. Quantum circuits designed for the LNN
architecture are suitable for TDMPS simulations because the MPS data
structure for TDMPS is a sort of LNN coupling structures. One can follow
how each qubit evolves by tracing the SWAP gates in the figure; it is easily
verified to be in the same manner as (3).
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Fig. 5. Illustration of the QFT circuit introduced by Fowler et al.31 for the LNN archi-

tecture.

Now we revisit an in-place addition to add an integer b = bn−1bn−2 · · · b0
to |a〉. Note that, if b is just a classical data, it is not necessary to keep it
in a classical or quantum register. The process30 of in-place addition is as
follows.
(i) |a〉 QFT7→

⊗
k |φk(a)〉.

(ii) Each qubit goes through the process:

|φk(a)〉 bk−controlled R1−−−−−−−−−−−−−→ (|0〉 + ei2π(0.akak−1···a0+0.bk)|1〉)/
√

2
bk−1−controlled R2−−−−−−−−−−−−−→ (|0〉 + ei2π(0.akak−1···a0+0.bkbk−1)|1〉)/

√
2

−→ · · · b0−controlled Rk+1−−−−−−−−−−−−−→ (|0〉 + ei2π(0.akak−1···a0+0.bkbk−1···b0)|1〉)/
√

2
= |φk(a+ b mod 2n)〉

(iii)
⊗

k |φk(a+ b mod 2n)〉 QFT−1

7→ |a+ b mod 2n〉.
Step (ii) is a Fourier-domain addition, which alone is often used as a

main component for constructing arithmetic quantum circuits.
It is now clear that the Schmidt rank of any nearest-neighbour splitting

does not exceed the initial degree of superposition in the computational
basis throughout the in-place addition. Now we are going to see a numerical
result visualising this property.

Let us consider a simple example where |0 · · · 01〉 is added to the
GHZ state (|0 · · · 0〉 + |1 · · · 1〉)/

√
2 (thus the resultant state is (|0 · · · 01〉 +

|0 · · · 00〉)/
√

2). The quantum circuit is illustrated in Fig. 6. A TDMPS sim-
ulation of this circuit is performed for input sizes n up to 100. As shown
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Fig. 6. Illustration of a simple example of QFT-based addition (see the text for more

explanation).
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Fig. 7. Plots of running time and mmax,max in the TDMPS simulation of the quantum

circuit illustrated in Fig. 6 as functions of n. The floating-point precision was set to 256.
The line of cn2 is shown with c = 0.025 (using the left vertical axis). The program was
run as a single thread on the machine with four Intel Xeon E7-8837 2.67GHz CPUs,
315GB memory, and the RedHat Enterprise Linux 6 64-bit OS.

in Fig. 7, the maximum Schmidt rank mmax,max was 2 for all n ≥ 2; this is
in accordance with the theoretical observation. The figure also shows time
consumption as a function of n. It seems to be bounded from above by cn2

with c = 0.025. This is reasonable as the number of quantum gates in the
circuit is on the order of n2 and the maximum Schmidt rank is constant. It
should be noted that theoretical analyses of more realistic QFT-based arith-
metic circuits are not so easy as the present case; there should be ancillary
qubits for conditioning arithmetics and concatenations of Fourier-domain
operation units. It is hoped that a theoretical estimation of the maximum
Schmidt rank will be made for each QFT-based operation unit. This will
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Fig. 8. Semiclassical-QFT-based quantum circuit for Shor’s prime factorization intro-
duced by Beauregard.33

be useful to analyze the QFT-based variants31,32 of Shor’s quantum prime
factorization.

4.5. Simulation of the Shor’s algorithm

At last, we will see the performance of the ZKCM QC library for simulating
Shor’s algorithm.23 As is well-known, prime factorization by Shor’s algo-
rithm is the most significant application of quantum computing. Known
classical algorithms take subexponential time while Shor’s algorithm takes
only polynomial time for factoring a composite number.

Here, I consider Beauregard’s circuit construction33 where a semiclas-
sical QFT is utilized (Fig. 8) to reduce the upper-side resister to a single
qubit. As for the modular exponentiation, I used Fowler et al.’s construc-
tion31 for the linear nearest neighbor (LNN) architecture, which uses LNN
QFT-based Fourier-domain additions internally. In total, the circuit has
2n+4 qubits and O(n4) quantum gates31 for an n-bit-long composite num-
ber N . It should be mentioned that several authors34–36 discussed the sim-
ulability of QFT-based variants of Shor’s algorithm in relation with the
TDMPS and related methods, which is still an open question.

Here, several randomly-generated composite numbers have been tried
and solved correctly by the TDMPS simulation of quantum prime factor-
ization. At most a 25-bit number has been tried [thus the circuit width
(the number of qubits) has been up to 54]. For this simulation, ZKCM QC
ver.0.1.2 has been used together with ZKCM ver.0.3.6. The running time
looks growing only polynomially in n as shown in Fig. 9. Note that this run-
ning time is for the entire prime factorization process including the TDMPS
simulation of the quantum circuit and the subsequent classical integer com-
putation. By the fitting, it looks that O(n4) time is enough for simulation.
Of course, larger n should be tried to see the tendency for a practical range,
say, n = 128 or 256. This will be reachable by massive parallel computation
in near future.
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Fig. 9. Running time as a function of the bit length n of a composite number. The
curve is the polynomial curve fitting with degree four. The floating-point precision was
set to 128. The program was run as a single thread on the machine with four Intel Xeon

E7-8837 2.67GHz CPUs, 315GB memory, and the RedHat Enterprise Linux 6 64-bit OS.

5. Concluding remarks

Several simulation results of the TDMPS simulation of quantum circuits
have been introduced in this report. It has been often the case that the
TDMPS method has been rather economical and able to simulate a rel-
atively large quantum circuit within practical time. It has been indicated
that the method is especially economical in simulating the quantum Fourier
transform (QFT). It is interesting to further investigate the ability to simu-
late a QFT-based variant of quantum prime factorization by continuing the
simulation work shown in Sec. 4.5. The TDMPS method, however, is not
always very fast. The time consumption for a certain small 3SAT instance
was significantly large in the TDMPS simulation of a single query of the
Grover search. This suggests that the TDMPS simulation is not suitable
for solving NP-hard database search problems although one cannot state it
definitely with this example alone.

As I showed in Refs. 9 and 18, the TDMPS method is sensitive to
rounding errors and truncation errors when it is used for simulating quan-
tum computing. This is why multiprecision computation has been employed
in my library. Nonetheless, owing to the poor hardware support for multi-
precision floating-point operations in commercial CPUs, the constant factor
of computational cost is presently significantly large. It is hoped that an
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automated parallelization will be implemented in the library so that it can
handle larger quantum circuits feasible for solving practical computational
problems.
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